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Introduction

As a result of a study into the ability of modem Computational Fluid Dynamics (CFD)

codes to adequately analyze aeroservoelastic interactions, it was concluded that there exists a

strong need for well-documented experimental data which could be used to validate and/or

calibrate these codes. Although extensive data is already available in the literature, much of it is

unsuitable for use in this manner. In view of this, the Structural Dynamics Division of the

NASA Langley Research Center (LaRC) has initiated an experimental program in aeroelasticity.

The primary aim of the program, the Benchmark Models Program (BMP), is to provide

experimental data to evaluate CFD codes for aeroelastic analysis. The program also aims to

provide insight into the phenomenon of unsteady flow and to provide a data base for empirical

design. (See refs. 1-4.)

The BMP involves a series of aeroelastic models with different configurations to be

tested in the Transonic Dynamics Tunnel (TDT) of NASA LaRC. One of these models is the

Benchmark Active Controls Testing (BACT) model (ref. 1). It consists of a rigid wing of

rectangular planform with a NACA 0012 profile and three control surfaces, namely, a trailing-

edge control surface, a lower-surface spoiler, and an upper-surface spoiler. Figure 1 is a

photograph of the BACT model, whilst figure 2 is an illustration of its planform. The model will

be tested in the TDT using a flexible mount system which only allows plunging and/or pitching

motion. Whilst having goals consistent with the BMP as a whole, a further important aim of the

testing will be to validate analytical design tools for active control.

One data set of interest to the program would be that which results from the model

oscillating sinusoidally, in turn, in pure plunge and pure pitch. Of vital interest, then, would be

the forces required to cause the model to execute the prescribed plunging or pitching motion.

Clearly this is because the choice of the actuation system (for example, low force-capability gas

thrusters or high force-capability hydraulic jacks) depends on the force requirements. It is with

the quantification of these force requirements that this report is primarily concerned.

It will be noticed that if the forces required to move the model could be determined

exactly, it must mean that the aerodynamic forces acting on the model are known exactly, and

hence the need would not exist to perform a test to measure these aerodynamic forces. (A major

aim of the BMP is to determine the forces acting on wind tunnel models.) It should therefore be

emphasized that the purpose of this report is to determine approximately the forces required to be

applied to the model, so that the feasibility of this part of the BACT model test may be assessed.



Symbols

NOTE:(1) The term "wing" is meant to include the effect of the (ftxed) trailing-edge control

surface. For the purposes of this analysis, the spoilers are non-existent.

(2) The elastic axis, center of mass and mid-chord of the wing are coincident.

a

a

b

b

c

dA

dB

dh

f

FA

FB

f(x)

gi

H

i

I

I

k

k

K

K

ki

kij
L

m

speed of sound in tunnel medium

n22/nll

semi-chord

( 1+.a.2)/nll

_l,_,2/(nlln22 -n12n21 )

distance of FA from mid-chord of wing

distance of FB from mid-chord of wing

distance between trailing-edge control surface hinge line and center of mass of wailing-

edge control surface

distance of trailing-edge control surface hinge line from mid-chord of wing

frequency

external point force acting on model at distance dA forward of mid-chord of wing

(positive up)

external point force acting on model at distance dB aft of mid-chord of wing (positive up)

ith wind-off natural frequency

aerodynamic force per unit chord length

i th modal damping ratio

hinge moment about trailing-edge control surface hinge line (positive nose-down)

moment of inertia of wing about mid-chord of wing

identity matrix

moment of inertia of wailing-edge control surface about its center of mass

plunge stiffness of pitch and plunge mount

reduced frequency, tob/V

pitch stiffness of pitch and plunge mount

generalized stiffness matrix

ith reduced frequency

ij th term of K

lift force acting through mid-chord of wing (positive up)

mass of wing



M

M

mij

m_

nij

P

q

Q

qD

qij

qijl

qijR

sij

t

T

U

V

Vg

x

Y

Y

Mach number

generalized mass matrix

ij Vaterm of M

mass of trailing-edge control surface

ij uhelement of M- 1

pitching moment about mid-chord of wing (positive nose-down)

generalized displacement vector, given by z=[ y 0 _ IT

matrix of generalized aerodynamic force coefficients

1 V 2
dynamic pressure, _p

given by qo(qijR+iqijl), that is, the ij va term of qD Q

imaginary part of ij aa term of Q

real part of ij _ term of Q

contribution of j th mode to ith sensor reading

time

kinetic energy of system

potential energy of system

free-stream velocity

gust velocity (positive up)

non-dimensional gust velocity, given by _g=vg/V (positive up)

chordwise distance from mid-chord of wing (positive aft)

vertical displacement of mid-chord of wing from equilibrium (positive down)

amplitude of plunging motion

bW

0

0

Ai

P

tO

%
too

virtual work done by aerodynamic forces

pitch angle of wing from equilibrium (positive nose-up)

amplitude of pitching motion

eigenvalues of M- 1K

i th non-zero eigenvalue of M-1K

deflection of trailing-edge control surface relative to wing (positive trailing-edge down)

density of wind-tunnel medium

circular frequency

circular frequency of plunging motion

circular frequency of pitching motion

3



Equations of Motion

The equations of motion will be derived to take into account the effect of trailing edge

control surface motion and vertical gusts. This is because the numerical model from which the

aerodynamic forces are extracted include the forces acting on the wing due to these two

phenomena. The spoilers, for the purposes of this analysis, are non-existent.

Prior to any testing, the model will be balanced so that the system center of mass

coincides with the elastic axis of the mount system, which also corresponds to the mid-chord

position. This decouples the plunging and pitching modes, provided the trailing-edge control

surface is fixed. (Compare with ref. 4.)

For the purposes of this analysis, the effect of gravity is ignored. Although this effect is

of great importance as far as the position of the trailing-edge control surface is concerned,

neglecting it does not affect the results as the trailing-edge control surface is later fixed.

The equations of motion may be formulated by making use of Lagrange's equations (ref.

5). With reference to figure 3, the system kinetic energy and potential energy axe respectively

given by

l [i_+(dh+dc)O]2-2l{02 and

(1)

u=l ky2 +l K o 2. (2)

Using Equations (1) and (2) in conjunction with Lagrange's equations gives, as the in vacuo

equations of motion,

M_ + Kq = 0, where (3)

.-

m 0

0 I

m_(dh + dc)dc

m_ dc +I_

rn_dc

m¢(dh + dc)dc

+1_

rn_dc 2 + 1_
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K= K and q= .

0

It will be noted that the effect of structural damping has been neglected. This is justified

by the fact that any structural damping present will be small. (Table 1 of ref. 4 quotes an

experimentally measured structural damping figure of 0.0024 for both the plunge and pitch

modes for a NACA 0012 aerofoil with the same mounting system.)

Now let the system be acted upon by external non-conservative forces. These forces

consist of (1) the aerodynamic forces, and (2) any other external non-conservative forces. The

aerodynamic forces are represented in figure 4. The virtual work done by these forces is given

by

That is,

_V = (-L)Sy + (-P)SO + (-H)S_ , where (4)

L= fb_bf(X)dx,

P = _bbxf(x)dx, and

H = (X-ah)Y(x)a ,

are the aerodynamic lift, pitching moment (about the mid-chord of the wing) and hinge moment

(about the trailing-edge control surface hinge line) respectively. Hence, the equations of motion,

including the aerodynamic forces, become

M_i+Kq+[L P H]T=0. (5)

Now, for constant amplitude sinusoidal motion, the vector [L P H ]T, the generalized

aerodynamic force vector, may be represented by
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[Lp .:=qoQ[y o ¢ ,

_g = vg / V being the vertical gust velocity, Vg, non-dimensionalized by the free-stream velocity,

V, Q a matrix of generalized aerodynamic force coefficients, and qD the dynamic pressure (ref.

6). (The contribution due to gusts is later excluded from consideration.)

Now, if, as shown in figure 5, the external point forces FA and FB also act on the

structure, the complete equations of motion, including the effect of the external non-conservative

forces, are

[qlMq+Kq+qDQ _g + - d B FB =
0

0. (7)

Determination of External Forces

Having derived the equations of motion in the form of equation (7), it is then possible to

perform an inversion to determine the point forces, FA and FB, in terms of the generalized

coordinates.*

Let the ij th term of the generalized mass, stiffness, and aerodynamic force coefficient

matrices be given by mij, kij and qijR + iqijl respectively. Setting _ = 7g = 0 (that is, fixing the

trailing edge control surface and removing the effect of gusts) with

y = Y sin Ogyt and }0 = 19sin _0t
(8)

gives

[-mlla)y 2 + kll + qD(qllR + iqlll )]YsinOJy t

+qD(ql2 R +iql21 )_gsin_0t + F A + F B =0, and

(9)

In this sense, the problem described herein is a linear Inverse Problem, since the unknown input to a known

system with a known response to this input is sought. In fact, the problem falls into the category of the

Reconstruction Problem (ref. 7), or, more precisely, the Force Identification problem.
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qD(q21R + iq21! )Ysina_yt
(10)

+[-m220)02 + k22+ qD(q22R + iq221 )] Osin toot- FAdA + FBd B =0.

as the equations of motion, in which plunging and pitching motion occur with amplitudes of Y

and O, and with circular frequencies of toy and to0respectively (t = time).* Solving equations (9)

and (10) simultaneously for FA and FB gives

F A = E( 1)-dB -rnllOgy 2 +kll +qll -_B'B q21 YsmtOytdA + dB

+ (_B m220902 +q12-_B k22-_Bq2210sinOgot 1, and

(11)

FB

dA + d B -mllt°y 2+k11+qll+'_AAq21 YsmtOyt

(12)

where qij -- qD(qijR + iqij/), namely, the ij th term of the matrix of generalized aerodynamic force

coefficients Q, multiplied by the dynamic pressure qD. The point forces, FA and FB, required for

the model to execute pure plunging and pure pitching motion may then be easily determined as

follows.

Pure Plunge

If the model executes pure plunging motion, the motion of the model as a function of

time may be described by the equations

y = Y sin tOyt and

J/9=0.
(13)

Thus, t9 = 0 is substituted into equations (11) and (12) to yield

lit

The amplitudes may be complex to represent arbitrary phase differences between the plunging and pitching

motions.



FA _ [( ' 1-dBY -mll_y 2 +kll +qOqllR -_BqDq21R
dA + d B

+ i qD ql 1! - _BqD q21! sin tOyt, and

(14)

Fn --
_dmY II_mll_y2 dl'kll -_qDqllR _!'_m qOq21R l

d A +dB

+ i qD q111 + _AqD q21! sin COyt

(15)

as the forces required for the model to execute pure sinusoidal plunging motion.

Pure Pitch

Similarly, if the model executes pure pitching motion, the motion of the model may be

described by

y=O and }0 = Osin toot. (16)

Hence, Y- 0 is substituted into equations (11) and (12) to give

FA = _A +'_B m22tO0 2 +qDql2R - k22-'_BqDq22R

+i(qDql21 -_B qDq22! )]sintoot, and

(17)

FB= --_ rI- l=-m22COo2+qnq12R+1 1 )aA*aBI.k aA _k22 *_qDq22_

+i qDql2! +-_AqDq221 sintOot

(18)

as the forces required for the model to execute pure sinusoidal pitching motion.
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Numerical Results

With the aid of equations (14), (15), (17) and (18), the magnitudes (per unit of plunge or

pitch amplitude) and phases (relative to the motion) of the forces required to cause the model to

execute each of the two types of motion may be determined. The numerical values of the various

terms in these equations may be determined as described below.

The Interaction of Structures, Aerodynamics, and Controls (ISAC) computer program

(ref. 8) was previously used to perform an aeroservoelastic analysis of the BACT model without

spoilers. It is from the results of this analysis that the majority of the numerical values required

are obtained.

It should be noted that the ISAC numerical model is three-dimensional as far as the

aerodynamics are concerned (that is, there is a spanwise and chordwise distribution of

aerodynamic forces). This three-dimensional model is reduced to a two-dimensional one by

making use of the generalized aerodynamic force coefficient matrix, Q, which contains the

forces (normalized by the dynamic pressure qD) acting on the two-dimensional model described

herein due to changes in the coordinates y, 0, _ and fig used to quantify this two-dimensional

model.

Appendix A contains a listing of the ISAC output file DYN_TAPE5.DAT for a Mach

number, M, of 0.78. The format of this file is illustrated in appendix B. As may be seen, the

generalized stiffness matrix is not explicitly given. This matrix may be determined from the

generalized mass matrix and the natural frequencies by the following method.

Let ;t represent the eigenvalues of M'IK, and hence the square of the natural frequencies

(in rad s -1) of the undamped system described by equation (8). Then, det(M-1K - _.I) = 0, or

n 1k - _ nl2K 0 1det / n21k n22 K - _ 0 =0,

L n31k n32K -;_

(19)

where nij is the ijth element of M -1, which in turn leads to

+.,2x)z+I.,,.= - K]=o

If 0, ,'3,1and _2 are the eigenvalues,

(20)

/]2 _ (n 1lk + n22K)_ + (n 1ln22 _ nl2n21)k K = )]2 _ (_1 + _2)/], + '_,1'_,2• (21)
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Equatingcoefficientsandsolvingfor k and K gives

b + __b2 - 4ac c
k = and K =-, (22)

2 k

where a = n22 / n 1I, b = (A 1+ A2) / nl 1 and c = 21A2 / (n 1ln22 - n12n21). As may be seen from

appendix A, the ISAC model has plunge and pitch natural frequencies of 3.40 Hz and 5.16 Hz

respectively. Thus, set/q.1 = (3.40 x 2at) 2 and _2 = (5.16 x 27r) 2 (rad 2 s-2), and then compute M -1

to obtain

k = 216.459, 498.555 lb in-1 and

K = 33008.2, 14331.3 in-lb rad-1.

An examination of the eigenvectors of M-1K for each solution pair (k, K) (see fig. 6 for a

diagrammatic representation of these eigenvectors, or, alternatively, the mode shapes of the

system) reveals that the solution pair (k = 216.459, K = 33008.2) results in plunge occurring

before pitch, whilst the solution pair (k = 498.555, K = 14331.3) results in pitch occurring before

plunge. Since the plunge frequency (3.40 Hz) actually occurs before the pitch frequency (5.16

Hz),

k = 216.459 lb in -1 and K = 33008.2 in-lb rad -1

should be chosen as the applicable stiffness values.

The generalized aerodynamic force coefficients, qijR + iqijl, may also be obtained from

the ISAC output file of appendix A. Contained in appendix B is an explanation of the manner in

which these are listed.

Finally, numerical values are required for dA and dB. For the purpose of this analysis,

these will be taken as

dA = dB = 7 in.

Using the above-mentioned numerical values, the FORTRAN program PPRFCE in appendix C

was written to determine, from equations (14), (15), (17) and (18), the magnitudes (per unit of

plunge or pitch amplitude) and phases (relative to the motion) of the point forces, FA and FB,

required to constrain the model to execute each of the two types of motion (at the frequencies

10



corresponding to the reduced frequencies for which the generalized aerodynamic force

coefficients are determined by ISAC). The tunnel medium is Freon, in which the speed of sound,

a = 500 ft s-1. (This is for a 95% Freon 12/air mixture at a temperature of 530" R and a pressure

of 2000 psf.) Using this value for a leads, with a model semi-chord, b, of 8 in, to the relationship

between frequency, reduced frequency and Mach number illustrated in figure 7.*

Figures 8-11 contain the plotted results of four separate runs of PPRFCE for the

following test conditions:

(1) Wind-off

(2) M = 0.78, q = 100 psf (below flutter)

(3) M = 0.78, q = 146 psf (neart flutter)

(4) M = 0.78, q = 200 psf (above flutter)

Discussion

The purpose of this analysis is to approximately determine the forces required to move

the BACT model in pure plunge and pure pitch. The graphical data contained in figures 8-11

presents this information for various test conditions.

As expected, the wind-off behavior of the system is that of a classical undamped two

degree-of-freedom system. As may be seen from figures 8(a) and 8(b), no force is theoretically

required at either the plunge (3.40 Hz) or pitch (5.16 Hz) natural frequencies, to produce,

respectively, pure plunging or pure pitching motion, with the forcing function shifting from

being in phase with the motion to being out of phase with the motion as the frequency of

excitation is increased through each natural frequency. (The lack of frequency resolution in the

ISAC data used prevents this phenomenon from being exactly represented graphically in figs. 8-

11. Also, note that because of the directions defined to be positive for FA, FB, y and 0, a 180 °

phase angle between FA and FB and the plunge coordinate y, for instance, means that FA and FB

are actually in phase with y.)

Ill

From this figure, a connection may be drawn between the forces required to move the BACT model (which, as

will be seen later, can be highly frequency dependent) and the reduced frequency achievable with these forces. A

great deal of emphasis is placed on this reduced frequency parameter for the BACT model test.

t The previously-determined flutter dynamic pressure at M = 0.78 is 146.135 psf. This was obtained by using the

STABCAR module of ISAC.
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For the wind-on test cases, it will be seen that the effect of aerodynamics on the forces

required to produce plunging motion is small (compare fig. 8(a) to figs. 9(a), 10(a) and 1 l(a)).

The effect of aerodynamics is, as might be expected, greater when the model executes a pitching

motion (compare fig. 8(b) to figs. 9(b), 10(b) and 1 l(b)). This may especially be said to be so

considering that the plunge forces are shown per inch of plunge amplitude, while the pitch forces

are shown per degree of pitch amplitude. Because the center of pressure is closer to the point of

application of FA than it is to that of FB, FA is affected to a greater extent than FB. As my be

seen from figures 9(b), 10(b) and 1 l(b), the minima of the IFAI vs. f and IFBI vs. f curves for

pitching motion now occur at different points, with the result that there is no one frequency

where both the forces required to achieve pure pitching motion are theoretically zero. In fact, for

the test conditions considered, the quantity [(IFAI, IFBI)max] rain is of the order of 20-30 lb per

degree of pitch amplitude, and occurs when the curves intersect. In other words, the force

actuators which are used to move the BACT model in pure pitch must be capable of producing

20-30 lb per degree of pitch amplitude before any pure pitching motion is possible. As with

pure plunging motion, this minimum force requirement (which is theoretically near zero for pure

plunging) occurs at a particular frequency, and increases as the amplitude of motion is increased,

the frequency of motion is reduced, or, most severely, the frequency of motion is increased.

It may therefore be seen from figures 8-11 that, for the test conditions considered, only

plunging motion may be achieved with negligible force. This is possible, wind-off and wind-on,

only near the plunge natural frequency of 3.40 Hz. (For M = 0.78, this, according to fig. 7,

results in a reduced frequency, k -- 0.035.) As far as pure pitching is concerned, the smallest

force, per degree of pitch amplitude, that will produce the motion is of the order of 20-30 lb.

This occurs nearf ---4 Hz (k -- 0.04). Excitation at higher frequencies, in either plunge or pitch,

requires significantly larger forces. This is attributed to the quadratic relationship between the

inertial loads and the frequency of motion.

Concluding Remarks

Presented above is an approximate analytical determination of the forces required to

move the BACT model in either pure plunge or pure pitch. The analysis makes use of results

previously obtained from ISAC to obtain the majority of the required numerical values.

It was seen that, for the test conditions considered, only plunging motion may be

achieved with negligible force. It was pointed out that this is possible, wind-off and wind-on,

only near the plunge natural frequency. As far as pure pitching is concerned, the smallest force,

per degree of pitch amplitude, that will produce the motion is of the order of 20-30 lb. This
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occursnearafrequencyslightly lessthanthepitchnaturalfrequency.It wasalsopointedout that

excitationat otherfrequencies,in eitherplungeor pitch, requireslarger forces. This increasein

theforcerequirementisespeciallysignificantathigherfrequencies.
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Appendix A--ISAC DYN_TAPE5.DAT File for M = 0.78

ASEB2> sh def

$2$DUC0:[DCRUZ.PAPA RIG.MATX.ISACDATA]
ASEB2> ty dyn _ape5 m_O.dat

0.000000 0_00100_ 0.005000 0.010000 0.020000 0.040000 0.060000 0.080000

0.100000 0.130000 0.160000 0.200000
0.0000000E+00 0.0000000E+00

0.0000000E+00 0.0000000E+00
0.0000000E+00 0.0000000E+00

0.2360745E+04 0.0000000E+00
-0.1060751£+05 0.0000000E+00
0.4733114K+02 O.O000000E+O0

0.4571392E+03 O.O000000E+O0
0.3123492E÷03 0.0000000E+O0
0.1047493E+03 0.0000000E+00
0.2360745E+04 0.0000000£+00
-0.I060751E+05 0,0000000£+00
0.4733114E+02 0.0000000E+00
0.2086285£-03 0.2950917E+00

-0.2832395E-02 -0.1325931E+01
-0.2807805E-04 0.5916387£-02

0.2360736E÷04 -0.3429534E+00
-0.1060746E+05 0.2604929E+02

0.4733095E+02 0.4179317E+00
0.4571370E+03 -0.6140946E+00

0.3123663E+03 0.4820890£+01
0.I047494E+03 0.1923599E+00

0.2360725E÷04 -0.5355827E+01
-0.1000739E+05 0.2987640E+02
0.4733103E÷02 -0.1600142E-01
0.5209487E-02 0.1475285E÷01

-0.7077803[-01 -0.6628576E÷01
-0.I020520E-03 0.29581qgE-01

0.2360529E÷04 -0.1705897E÷01
-0.I060611E÷05 0.1302027E+03

0.4732767[+02 0.2089802E÷01
0.4570744£÷03 -0.3060403E÷01

0.3127788E+03 0.2409324E+02
0.I047496E+03 0.9618196E+00

0.2360265E÷04 -0.2676594E÷02
-0.I060470E÷05 0.1493114E+03

0.4733041E+02 -0.7988867E-01
0.2076123E-01 0.2949507E+01

-0,2827187E+00 -0.1325045£+02
-0.2809189E-02 0.5916107E-01

0.2359888£+04 -0.3357057E+01
-0.1060193E+05 _.2601355E+03

0.4731824E+02 0.4180474E+01
0.4568008E+03 -0.6124053E+01

0.3140604E+03 0.4811731E+02
0.I047505E+03 0.1923766E+01

0.2350841E÷04 -0.5345046E+02
-0.I059630E+05 0.2981854E+03
0.4732938E+02 -0.1590634£+00

0.8186422E-01 0.5890697£+01

-0.1124816E+01 -0.2644846E÷02
-0.I125185E-01 0.1183044E+00

0.2357406E+04 -0.6294385E+01
-0.I058562E÷05 0.5182003E÷03

0.4727958E+02 0.0367682E+01
0.4561239E+03 -0.1215026£÷02

0.3190988E+03 0.9570166£+02

0.i047543E÷03 0.3848495£+01
0.2353244£+04 -0.I062712E+03

-0.1056321E÷05 0.5929800£+03
0.4732447£+02 -0.3126648E+00

0.3109684E+00 0.1172026E+02

-0.4413990E+01

-0.4521089£-01
0.2348495£÷04

-0.i052523£+05

0.4714023£+02

0.4533213E+03
0.3381290£+03

0.i047727£+03
0.2332174E+04

-0.I043750E+05

0.4732190E+02
0.$501896£+00

-0.9671860E+01
-0.1023003£+00

0.2336057£+04
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0.2269994£+04

-0.9806817E+04
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-0.5180247£+02
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Appendix B--Format of ISAC DYN_TAPE5.DAT Files

Reduced frequencies:
ki, i = 1,2 .....12

Generalized aerodynamic forces for each reduced frequency:

(((qijR qijt)k, i= 1,2,3),j = 1,2,3,4),k = 1,2..... 12

Generalized mass matrix:

(m/j,j = 1,2,3), i = 1,2,3

f2
f3

Natural frequencies (Hz): plunge, pitch, control surface

gl g2 g3" Modal damping ratios

Contribution ofj th mode to i th sensor reading:

(sij, J = 1,2,3), i= 1,2

(Units: slinch, in, s, rad)
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Appendix C--FORTRAN Source Code

ASEB2> sh def

$25DUC0 :[DCRUZ. PAPA_HI G. MATH ]

ASEB2> ty pprfce.for

PROGRAM PPRFCE
C

C THIS PROGRAM COMPUTES THE FORCES REQUIRED TO MOVE

: THE BENCHMARK ACTIVE CONTROLS MODEL IN EITHER

C PURE PLUNGE OR PURE PITCH. THE EFFECT OF

C AERODYNAMICS IS INCLUDED BY USING DATA GENERATED

C FROM ISAC RUNS.
C

I_LICIT NONE

REAL* 8 PI,M, A, RFRQ (20) ,QR (20,20, 20) ,0I [20, 20, 20] ,GM(20,20} ,

+NFRO (20), D, B, Hll, M22, KII, K22, OM, FAPLH, FAPLI, FBPLR, FBPLI,

+FAPIR, FAP I I, FBPIR, FBP II, FAPL, FBPL, FAPI, FBPI, FREQ, FM (20),

÷FAFBPL (20, 2] ,FAFBPI [20,2) ,DUMMy, DYN, PHSEPL(20,2), PHSEPI [20, 2)

INTEGER* 4 NK, I, NF, NC, NM, NG, J, K

OPEN (UNIT-I, FILE- '$25DUC0 : [DCRUZ. PAPA RIG .MATX. ISAC DATA1
+DYN TAPE5 M78. DAT ', STATUS- 'OLD ', READONL¥)

OPEN (UN IT;2 , FILE-' FAFBH78 QI 00. DAT* ,STATUS-' UNKNOWN' )

READ IN ISAC OUTPUT:

P I-DACOS (-1.0D0 )

M-0.78D0

A'500.0D0°12.0D0

NK-12

READ(l, °] (RFRQ(I] , I-I,NK)

NF-2

NC-I

NM-NF+NC

NG-I

DYN-100.0DO/I¢ 4.0P0

DO 30 K-I,NK

DO 20 J-I,MM+NG

DO I0 I-1,NM

READ(l,*) QR(I, J, K] ,QI (I, J, K)

OR(I, J, K)-OR (I, J, K) *DYN

OI {I, J, K)-OI (I, J, K) *DYN

10 CONTINUE

20 CONTINUE

30 CONTINUE

READ (1, *] [(GM( I, J) ,J-t, NM), I-l, NM]

READ (1, *) [NFRQ [I), I-I, _4)

CALCULATE FA AND FB FOR PURE PLUNGE AND

PURE PITCH:

D-7.0DO

B-8.0D0

H11-_[i, I)

M22 -_M (2, 2 )

Kll-216. 45900

K22"33008.2D0

DO 90 I-I,NK

OM-RERQ (I) *M'A/B

FAPLR-- (-Ml I*OM*OH+KI I+QR (i, i, I) -OR [2, I, I )/D)/2.0D0

FAPLI-- [QI (1, I, I] -OI (2, i, I)/O)/2.0D0

FBPLR-- (-MI I*OH'OM+KI I÷QR (i, I, I ]+OR (2, i, I)/D)/2.0D0

FBPLI-- (OI [i, 1, I) +QI (2, I, I)/D)/2.0D0

rAP IN-- (M22*OM*OMID-K221D+QR(I, 2, I )-QR (2, 2, I)/D) ]2.0D0

FAPI I'- (QI [i, 2, I) -QI (2,2, I)/D)/2.0D0

FBPIR-- (-M22*OM'OM/D+K22/D+QR {I, 2, I) +QR (2,2, I)/D)/2.0D0

FBPI I-- (OI (I, 2, I) +QI [2, 2, I)/D]/2.0D0

FAPL-DSQRT (rAP LR*FAP LR÷FAPLI "FAPLI )

FBPL'DSQRT (FBPLR'FBPLR+_BPLI *FBPLI )

rAP I-DSORT {FAPIR'FAPIR+FAP I I* FAP I I ] "EI/180.0D0

FBF I'DSONT (FBPIR*FBPIR+FBPII *FBPII ] "PI/180.0DO

FREO-OM/[2. ODO*PI)

FM ( I)-FREO

FAFBFL (I, 1) -FAPL

FAFBP L (I, 2) -FBPL

FREBPI (I, X)-FAPI

FAFBP I (I, 2) -FBPI

PHSEP L (I, 1 )"DATAN2D (FAP LI, rAP LR )

PHSEPL (I, 2)'DRTAN2D (FBPLI, FBPLR)

PHSEPI [I, 1 )-DATAN2D (FAP II, rUIN)

PHSEPI {I, 2 )"OATAN2D (FBP II, FBP IR)

90 CONTINUE

CALL MATSAV(2, 'MTXFM', 20, NK, i, 0, FM, Db_IMY, ' {1P3E25.17) *)

CALL MATSAV(2, 'MTXFAFBPL', 20, NK, 2, 0,FAFBPL,DUMM¥, ' (XP3E25.Z?) ')

CALL MATSAV (2, 'MTXFAFBPI ', 20, NK, 2, 0, FAFBPI, DUMm4¥, ' (IP3E25.17) ']

CALL MATSAV (2, 'NTXPHSEPL', 20, NK, 2,0, FHSEPL, DUMMy, ' (IP3E25.17) ']

CALL MATSAV(2, 'NTXPHSEPI', 20,NK,2, 0,PMSEPI,DUEE4¥, ' [IP3E25.17) ')

STOP

END

ASEB2>
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Figure 1. BACT model with deflected aileron and deployed upper-surface spoiler.
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Figure 2. BACT model planform (reproduced from ref. 1, fig. 3).
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Figure 3. Model parameters and degrees of freedom.
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Figure 4. Aerodynamic force parameters.
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Figure 5. External applied point forces.
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FigL,re 6. Mode shapes for different spring stiffnesses.
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Figure 7. Relation between frequency, Mach number, and reduced frequency (a = 500 ft s'l).
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Figure 8(a). Plunge force characteristics (wind-off).
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Figure 8(b). Pitch force characteristics (wind-off).
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Figure9(a).Plungeforcecharacteristics(M = 0.78,q = I00 psi').
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Figure 9(b). Pitch force characteristics (M = 0.78, q = 100 pst').
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Figure 10(a). Plunge force charactedstics (M = 0.78, q = 146 ps0.
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Figure 10(b). Pitch force characteristics (M = 0.78, q = 146 psO.
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